skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van de Giesen, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Hutton et al. (2016) argued that computational hydrology can only be a proper science if the hydrological community makes sure that hydrological model studies are executed and presented in a reproducible manner. Hut, Drost and van de Giesen replied that to achieve this hydrologists should not “re-invent the water wheel” but rather use existing technology from other fields (such as containers and ESMValTool) and open interfaces (such as the Basic Model Interface, BMI) to do their computational science (Hut et al., 2017). With this paper and the associated release of the eWaterCycle platform and software package (available on Zenodo: https://doi.org/10.5281/zenodo.5119389, Verhoeven et al., 2022), we are putting our money where our mouth is and providing the hydrological community with a “FAIR by design” (FAIR meaning findable, accessible, interoperable, and reproducible) platform to do science. The eWaterCycle platform separates the experiments done on the model from the model code. In eWaterCycle, hydrological models are accessed through a common interface (BMI) in Python and run inside of software containers. In this way all models are accessed in a similar manner facilitating easy switching of models, model comparison and model coupling. Currently the following models and model suites are available through eWaterCycle: PCR-GLOBWB 2.0, wflow, Hype, LISFLOOD, MARRMoT, and WALRUS While these models are written in different programming languages they can all be run and interacted with from the Jupyter notebook environment within eWaterCycle. Furthermore, the pre-processing of input data for these models has been streamlined by making use of ESMValTool. Forcing for the models available in eWaterCycle from well-known datasets such as ERA5 can be generated with a single line of code. To illustrate the type of research that eWaterCycle facilitates, this paper includes five case studies: from a simple “hello world” where only a hydrograph is generated to a complex coupling of models in different languages. In this paper we stipulate the design choices made in building eWaterCycle and provide all the technical details to understand and work with the platform. For system administrators who want to install eWaterCycle on their infrastructure we offer a separate installation guide. For computational hydrologists that want to work with eWaterCycle we also provide a video explaining the platform from a user point of view (https://youtu.be/eE75dtIJ1lk, last access: 28 June 2022)​​​​​​​. With the eWaterCycle platform we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both Open Science and FAIR science. 
    more » « less
  2. null (Ed.)
    Abstract. Near-surface wind speed is typically only measured by point observations. The actively heated fiber-optic (AHFO) technique, however, has thepotential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scaleprocesses. Before AHFO can be widely used, its performance needs to be tested in a range of settings. In this work, experimental results on thisnovel observational wind-probing technique are presented. We utilized a controlled wind tunnel setup to assess both the accuracy and the precisionof AHFO under a range of operational conditions (wind speed, angles of attack and temperature difference). The technique allows for wind speedcharacterization with a spatial resolution of 0.3 m on a 1 s timescale. The flow in the wind tunnel was varied in a controlledmanner such that the mean wind ranged between 1 and 17 m s−1. The AHFO measurements are compared to sonic anemometer measurements andshow a high coefficient of determination (0.92–0.96) for all individual angles, after correcting the AHFO measurements for the angle ofattack. Both the precision and accuracy of the AHFO measurements were also greater than 95 % for all conditions. We conclude that AHFO has thepotential to measure wind speed, and we present a method to help choose the heating settings of AHFO. AHFO allows for the characterization ofspatially varying fields of mean wind. In the future, the technique could potentially be combined with conventional distributed temperature sensing(DTS) for sensible heat flux estimation in micrometeorological and hydrological applications. 
    more » « less
  3. null (Ed.)
    Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas. 
    more » « less